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A B S T R A C T

It is well-docu[liented (Hitschfcld  and Bordan 1954, Me[,eghixli
1978, IIaddad  et al 1993) that there are significant anltrigui-
ties inherent in the deterlnination  of a particular vertical rain
intensity profile fro[rl a giverl tinle  profile of radar echo pow-
ers measured by a dow,nw,ard-  looking (spaceborr]e  or airborne)
radar at a single attenuating frequel Lcy. Indeed, one already
knows (Iladdad et al 1993) how to vary the  paran,etcry  of the
reflectivity- rainrate (Z – R) and attenuation- rainrate (k -- R)
relationships in order to produce several substantially different
rain rate profiles which would produce the sanie  radar power pro
file. Irl,positlg the additional constraint that the  path-averaged
rain- rate be a given fixed nunlt,er  does reduce t}~c ambiguities
but falls far short  of eliminating then,  (Haddad et al 1994).
While we have derived the forImrlas to generate all de/ert/tin-
istic  mutually ar[~biguous rain rzte profiles fro]n a givrm profile
of received radar reflectivities,  there rerllains  to procluce a quan-
titative nlewsure to amess how likely each of these dcterlllinistic
profiles is, what the appropriate “average” profile should be, and
what the “variance” of these multiple solutions is. Of course, in
order to do this, one needs to spell out the stochastic constraints
that earl allow us to make sense of the words “average” and
“variance “ in a mathematically rigorous way. SLlch a quantita-
tive approactl  would be particularly well-suited for such systems
as the spaceborne Ku-band Precipitation Radar of the liopical
Hainfall Me&wring Mission (1’RMM). Indeed, one would then
bc able to use the radar reflectivities  measured by the 1’RMM
radar to estirliate the rain rate profile that would most likely
have p] educed the mea.surenlents,  as well as the uncertainty in
the estinlated rain rates, as a function of range. Ibis paper
presents an optimal approach to solve this problem.

MATIIEMATICAI,  APPROACH

For sirliplicity,  we start with the model that the effective reflec-
tivity p(r), measured at range r by a downward-looking nlono-
static rli~rrow,-band  radar such as the TRMM l’recipitation  Radar,
is proportional to the reflectivity coefficient Z of the rain at
range r, and to the accumulated attenuation fronl range O (the
top of the cloud) to range r. Calling k(r) (resp, R(r)) the at-
tenuation coefficient (resp.  rain rate) at range r, wc awun]e  for
sirrlplicity  that Z =- a}@ and k = crF# for some value of the
parar[,ctm-s a, b, a ar,d ~, and that the calibrated reflectivity is
therefore given by

P(r) = 0R(T)610-0.  ](zJO’ OR(tprt) (1)

Trcatir,g  a, b, c-r and ~ as parameters, the solution to equation
(1) can be written as

Rquation  (2) suggests that if the rain paranleters  me not known
exactly, l[lultiple  solutions for 1/ can exits. In (IIaddad  et al
1993), we describe just how rrlutually  arrtbiguous  these multiple
solutions can get. In t}le satr!e paper, we also show that using
the surface return as a reference does not solve the ambiguity
problerr~.  Since one has to ‘live with” these al[ll,iguities,  it is
very ir[lportant  to know how likely each of the multiple solutions
is: specifically, given some a-priori U statistical” constraints on
the variables involved, one would like to find what the “average”
solution to (2). [Jsing average values for the rain parameters is
still  not suflcient because even when exact values for a, b, rr and
~ are given, it is known that the nurrlerical implementation of
equation (2) gives a nurrierically  unstable “inversion” algorithm].

‘1’bus onc is naturally led to a stochmtic  filtering approach.
One would like to introduce a “meaxure” on the set c,f all arl,bigu-
ous profiles giving rise to the sanle nleasrrred reflectivity profile,
and try to find the “average” profile with respect to this measure
on this set, along with an estimate of the rrlean difference be-
tween the members of this set of mutually arnbigrrous profiles. In
(Iladdad et al, 1993), we described an algorithm to compute the
joint probability density function ‘P for {If(r), a, h, rr, /3} given
nlerwuremcnts  of p(r). The ‘average” rain profile and the “mean
deviation” with all the mutually anlbiguous  profiles can then be
obtained from the nlonlellts  of ‘P. Indeed, the results reported in
(} Iaddad  et al, 1993) },ave been very encouraging. In particular,
in the case where a, b, Q and /3 are assumed known, this  ap-
proach yields a stable inversion algorithm  u,hich  does not require
atiy surface reference information. But calculating the full den-
sity function requires large anlounts  of computer nienlory  and
CPU tirnc,  too large to make the algorithm useful in anywhere
near real-time. In order to reduce the amount of coolprrter  re-
sources required, rather than calculating 7 itself, one can try
to compute its mean and covariance  directly. This arrlounts to
deriving the extended Kalman  frltcr appropriate to the problem
at hand. We now describe how this is done.

First, we need to specify the a-priori constraints on tbe
“state variables” R(r), a, b, a, L3 and c(r) = J: CIRO. For sirrl-
p]icity, we shall a.wurne that a, b, a and /3 are constant, that
the only constraint on c is that it be the integral with respect
to r of rrR(r)@,  and we express the requirement that R itself be
positive and continuous by writing

R(r) = e’(’)+A’ (3)

where z is the (nlathcmatieally) sinlplest  continuous stochas-
tic process and A a suitable factor (possibly zero) to be deter-
nlincd.  Specifically, without further a-priori infor~rlation, wc
a_wurllc  that z(r) = z(O) + ah(r), where z(O) and b(r) are in-
dependent, z(O) itself is Gaussian with mean ~~a and ‘variance

u8~ and ttle  process qr) ha independent o-mean Gaussian irl-
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crenwnts  with variance equal  to the  extent in range of t}le incre-
IIwnt interval. ‘1’bus, in effect, we are a.ssunling,  that the a-priori

t constraints on the evolution of log(R)  with raTlge r are those of-.
standard Drownian motion, up to a possible ‘driftm trmll Ar.

Now that wc have mtablisherl  the a-priori constraints on t},c
dynamics of our variables, we nlust  make explicit the functiou
h(r) expressing our measuremmtt  from range r in ter[lls  of our
state variables. From equation (l), one can see that

h(r) = log(a) -i fr(r(r)  + h-) - 0.210g(10)c(r)  i Noise. (4)

I,ct us write ON for the r.nl.s.  noise level in the nlea.srrrer[lents,
which, for sinlplicity,  we shall attribute here to Rayieig}]  fading
only (systenl  noise can be taken into account, at the expense of
rrlakir,g the exposition so]llewhat  nlorc cunlbersome).  Since our
data consist of the averaged power of Af independent pulses, the
noise ter]ll in (4) would be the logarithrIl of the average of the
squared-magnitudes of M independent standard colliplcx Gaus-
sian variables. Ilence,  as soon as A4 > 4, it is quite rca.~ol[able
to assurl]e that t}lis noise ternt  is itself approxinlate]y  a O nlean
norIllal variable with variance u~  m l/hf.

We are now ready to apply the standard rrlachinery  of stoch&s-
tic filtering to obtain  the best estinlate ~t(r) of the rain rate at
range r given all the observations. Since the relation dc/dr  :-
crft~ is non-linear, we cannot usc a straightforward Kalnlan  fil-
ter  to SOIVC the probleul.  Wc chose to use an extended Kalrllan
filter approach, usir,g a first-order ‘1’aylor  series linearization to
obtain both the forward estimate (starting frotil the top of the
cloud r =- O) and the backward estinlate (starting frorll the  ocean
surface). l’he  theory and details behind the technique can be
found for exanlple  in (Q?ksendal, 1985). For completeness, we
surnnlarize  the flow of the particular algorithrll  in the case at
hand, when the paranleters a, b, a and /3 are zsur[,ed kl,owl,.
First, one must obtain estimates i(r) and t(r) of the state vari-
ables r and c at all ranges r based on all earlier measurer[lents
obtained for r’ < r, along with their covariances  pCJr-), pa(r)
and p,,.(r).  ‘1’o do this, one rnrrsl,  start with

i(o) = rncl (5)

:(0) = o (t-i)
P.,(o) = o (7)

Pm(o) = o (8)
p==(o) = u:. (9)

I’hen,  given our estimates at range r, the estimates at range
r j 6 can be obtained in two steps, by first accounting for the
changes in the dynamics using the formulas

i(r -i 6) = ;(r) (lo)
E(r + 6) = ~(r) + a ~’+$ efiIzi’J+A*)dt (11)

jrr(r + 6) =  p..(r) + 02 6 (12)

~,, (r + 5) :. p~(r) +  o~~’+s e“[r(’)+~f)j=r(t)dt ( 1 3 )

jc.(r -t 6) =- p..(r) -+ 2cr/3 ~r+b eo(T(’)+A*)j.r(  t)dt, (14)

then by accounting for the measurement z(r +- 6) obtained frorrl
range r -t 6 using the forrnrrlas

i(r +  6) = ~(r + ~) +  !’P~Z&.~.6)  .-j~”2_10!!!lo]& ~ (15)

bjm(r -1 f5) - 0.2 log(l  O)jL
t(r+ 6) , z(r +6)+ ---- -- ~ -–-– -A (16)

ti,here I) = (0.210g(]O))2jCC(r + 6) - 2(0.210g(] O))6jti(r + 6) +
b’~rr(r+ 6)i ufj, and A = z(r+ 6)- (log(a)+  b(f(r-t c$)+Ar)-
0.2 logier + 6)). ‘f ’he backward portion of the algorithm
is sinlilar,  except for the obvious sign changes that are then
uecessar y. ‘1’he resulting procedure is orders of n)agnitude  nlore
efXcient than the full density function approach described in
(Haddad  et al, 1993). Its extension the the case of coupled
Z-R and k-R relations discussed in (IIaddad  eL al, 1994) is
straightforward.

APPLICATIONS

Before we can describe practical applications, wc still need to
discuss the choice one nlust  make for the paranleters  mo, UO,

u and J. Although in practice it turns  out t}lat the exact val-
ues do not affect the estimation algorithm sig[lificantly (after
all, when a, b, cs and @ arc known, the theoretical solution is
unique), one should certainly make an effort to give then] phys-
ically reasonable and realistic. values. 1’o do that, we usc the
a-priori co]lstraints  which we have inlposed.  It follows from (3)
that the expected value of the rain-rate R(0) at the top of the
rain colurf]n is

E{ R(o)} = J“”++”: (17)

and its relative variance is

~{(j($’:jj- ,)’}=ed- , (18)

In practice, we set a minirrrunl “threshold onset” value L&lin for
the smallest significant rain rate we expect at tllc top of the
rain colunln,  along with some estimate for the associated mean
relative uncertainty. Equation (18) then inlplies  that we should
choose

O’=’Og(l+-&{(:f:  -’)2}) ‘1’)
and (17) in turn implies that we should then choose

1
rno =- log(&,m)  - ;o~ (20)

The choice of A is somewhat more problcn!atic.  We do know
that, a priori, by definition, the rain rate should initially incrcasc
with range from the a-priori value A!n,,n. q’his would inlp]y a
positive drift A. ’10 get a value for ~, wc look at the ternlinal
bcbavior  of R Writing R’(r) for l?(r) = R(r, - r), where r.
is the range of the surface, and if we reverse the constraint (3)
in titlm to apply it to R’(r), one finds that the “a-priori” (with
tin,e reversed) expected value for R’ is given by

Since we have a priori no reruqou to expect the  rair, rate to in-
crease or decrease as one rnovcs up frorrr the bottorrl of the rain
c.olunln, it is natural to choose the value

(22)

Last, we nmst  decide on a value for a. In practice, we would
expect the average rain rate ROv~  over the rain colur[ln to be
greater than the nlininrurn  value Rm,,,, at the top of the column
(otherwise our data is of little interest). F’ronr equation (3) and
our choice of A, one can verify that

(23)
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, It is tlwreforc  natural to choose a by ulaking  this quantity equal
● to an expected average value R~ti~.

)

l’he  graph to the right shows the estinlatcd rain rate ob
tained  using the algorithr[l  described above, when the input was
one of the radar reflectivity proiiles measured  by JPI,’s  ARMAR

radar (Durdcn  et al, 1992) over the Western Pacific Ocean dur-
ing tbc  l’OGA-COARE  experiment in February 1993. Details
of the participation of ARMAR in COARF,  can bc found in (I,i
et al, 1993). Wc used the values a = 300, b = 1.4, a = 0.026 and
~ , ].11, along w i t h  }&,,n = 1 nlrli/hr (i 50’?ZO), a n d  R~.Q ‘ 10

r:ln]/hr.  For comparison, the graph below reproduces the esti -
nlate~ obtained using our full-density-functiorl code (from Had-
dad et al, 1993), where we had zuwumcd that 200 < a <400,
1.4 < b < 1.6, 0.018 < a <0.034 and ~ = 1.08. A more corl]prc-
hc]lsive analysis of the algorithn]  described above will tJc ready
shortly.
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